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This paper assesses the relative accuracy of a number of techniques that are capable of
predicting a wide range of creep properties. The techniques studied in this paper include
the 4-�, 6-θ , CRISPEN, Omega and CDM methodologies. The parameters of these models
were estimated from short-term creep property data on 1CrMoV steel and these estimated
models were then used to predict the known longer-term creep properties of this steel. It
was found that the CDM approach yielded predicted times to failure that were wholly
inadequate. The 6-θ approach was best for predicting long term times to failure. The best
minimum creep rate predictions came from using either the 4-�, or the CRISPEN or the
Omega technique. Finally, times to small strains were best predicted using the 6-θ and
CRISPEN techniques. C© 2004 Kluwer Academic Publishers

1. Introduction
When designing materials for high temperature service
the design criteria for long-term operation must guaran-
tee that creep deformation should not cause excessive
distortion over the planned service life and that creep
failure should not occur within such a required operat-
ing life. Such creep fracture represents an obvious ‘life
limiting’ design consideration as fracture of pipe work
or other major components used by nuclear powered
electricity generating plants could prove catastrophic.
However, substantial problems can also be encountered
due to excessive creep distortion. There are numerous
examples of such deformation limits within the power
generation and aero engine industries. For example, the
blades of a steam turbine cannot be allowed to extend
until they foul the surrounding casting. Similar require-
ments exist for the blades used in a gas turbine aero
engine.

A number of projection techniques are well suited
to the prediction of these two creep properties (time
to failure and time to small strains). The aim of this
paper is to assess the relative accuracy of such tech-
niques in predicting these and other creep properties.
The techniques to be compared in this paper include
the 4-� and 6-θ projection techniques developed by
Evans [1, 2] and then applied by amongst others Evans
[3] and Evans [4], the continuum damage techniques
(CDM) developed by Kachanov [5], Rabotnov [6] and
latter generalised by Othman and Hayhurst [7], the �

methodology for the life assessment of components re-
cently proposed by Prager [8] and applied by Keeble

[9] and the CReep Strain Prediction for ENgineering
alloys (CRISPEN) approach to interpolation and ex-
trapolation described by Ion et al. [10]. The tradi-
tional parametric procedures, such as the Larson-Miller
technique [11], are not considered here because they
are limited to the prediction of times to failure. In
contrast, the approaches mentioned above allow the
whole creep curve to be extrapolated to design (low)
stresses from accelerated stresses. Time to any strain
can then be ‘read off’ from such extrapolated creep
curves.

The 1CrMoV rotor steel data set published by Evans
et al. [12] will be used to study the accuracy of the
predictions made of time to various low strains, time to
failure and time to minimum creep rates (including the
minimum creep rate itself) using the above projection
techniques. To achieve this aim, this paper is therefore
structured as follows. First, the experimental procedure
and databases used are discussed. The following sec-
tion then reviews the various creep property predic-
tion techniques so that the mechanics of prediction in
each case are clearly understood. Section 4 then dis-
cusses the theoretical underpinnings behind each tech-
nique so that key differences between them become
clear. Section 5 discusses the procedures used to esti-
mate the unknown parameters of each prediction tech-
nique. Then in Section 6 the accuracy of the long-term
predictions made for the minimum creep rate, time to
failure and time to various low strains using the above
prediction techniques are assessed. A final section
concludes.
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2. Experimental procedures
The batch of material used for the present investiga-
tion represents the lower bound creep strength proper-
ties anticipated for 1CrMoV rotor steels. The chemical
composition of this batch of material (in wt%) was de-
termined as 0.27%C, 0.22%Si, 0.77%Mn, 0.008%S,
0.015%P, 0.97%Cr, 0.76%Ni, 0.85%Mo, 0.39%V,
0.125%Cu, 0.008%Al and 0.017%Sn. Following oil
quenching from 1238 K and tempering at 973 K, the
material had a tensile strength of 741 MPa, elongation
of 17%, reduction in area of 55% and a 0.2% proof
stress of 618 MPa.

Eighteen test pieces, with a gauge length of 25.4 mm
and a diameter of 3.8 mm, were tested in tension over
a range of stresses at 783, 823 and 863 K using high
precision constant-stress machines [13]. At 783 K, six
specimens were placed on test over the stress range 425
to 290 MPa, at 823 K seven specimens were placed on
test over the stress range 335 to 230 MPa and at 863 K
six specimens were tested over the stress range 250 to
165 MPa. Up to 400 creep strain/time readings were
taken during each of these tests. Normal creep curves
were observed under all these test conditions.

These eighteen specimens represent the accelerated
test data from which the parameters of the above creep
property prediction techniques will be estimated. To
assess the extrapolative capability of these techniques
long-term property data was supplied independently
by an industrial consortium involving GEC-Alsthom,
Babcocks Energy, National Power, PowerGen and Nu-
clear Electric. These long-term properties came from
the same batch of material used in the accelerated test
programme described above but for specimens with
gauge lengths of 125 mm and diameters of 14 mm that
were subjected to tests on high sensitivity constant-load
tensile creep machines. As such it is to be expected
that accurate failure time predictions made from the
short-term constant stress data are likely to exceed these
longer-term constant load failure times, because con-
stant load specimens experience accelerating stresses.

It is important to note that in all cases below the creep
property projection techniques did not make use of this
long-term property data. The creep property projection
techniques use only the accelerated test data to predict
the properties of these longer-term test results.

3. Methods of creep life prediction
3.1. The 4-� technique
The 4-� technique describes the shape of any creep
curve displaying normal primary and tertiary stages by
using four theta parameters through the equation

εi,h = �1,h(1 − e−�2,hti,h ) + �3,h(e�4,hti,h − 1) (1a)

where εi,h is the creep strain recorded at time ti (with
N such recordings in total) and at test condition h. In
Equation 1a, �1,h quantifies the total primary strain,
�2,h the curvature of the creep curve during primary
creep, �3,h scales the tertiary creep strain and �4,h mea-
sures the curvature of the creep curve during tertiary
creep at test condition h.

The idea is then to test various specimens at acceler-
ated stresses (τh) and temperatures (Th) and to estimate
for each of the resulting experimental creep curves the
� parameters in Equation 1a using a non-linear optimi-
sation technique. Each �j,h ( j = 1 to 4) is then related
to the accelerated test conditions through a simple lin-
ear extrapolation function of the form

ln(�j,h) = a0,j + a1,jτh + a2,jTh + a3,jτhTh (1b)

where τh is the stress associated with test condition h
and Th the temperature associated with test condition
h (with h = 1, M). a0,j to a3,j are parameters that can
be estimated using the linear least squares procedure.
Alternatively, weighted least squares can be used to re-
flect the fact that each �j,h value is only an estimate
of its true value. The weights used must reflect the dif-
ferent uncertainties associated with each �j,h estimate.
Each �j can then be extrapolated to lower stresses and
temperatures by simply substituting in the required test
conditions into Equation 1b. Let �̃j,h represents such
extrapolated theta values. It is then possible to use these
values to predict a variety of creep properties at close
to the operating conditions for a designed material. A
prediction of the minimum creep rate can be found by
first predicting the time to minimum creep rate at test
condition h

tM,h = 1

�̃2,h + �̃4,h
ln

�̃1,h�̃
2
2,h

�̃3,h�̃
2
4,h

(1c)

and from this the minimum creep rate itself

ε̇M,h = �̃1,h�̃2,he−�̃2,htM,h + �̃3,h�̃4,he�̃4,htM,h (1d)

where ε̇M,h is the minimum creep rate at test condition
h that occurs at time tM,h at test condition h. Similarly,
a prediction of the time to reach some specified creep
strain at test condition h, εs,h, can be obtained by solving
numerically for time t in the equation

θ̃1,h(1 − e−θ̃2,ht) + θ̃3,h(eθ̃4,ht − 1) − εs,h = 0. (1e)

As a special case of this, the failure time tF can be
predicted by solving Equation 1e when εs,h equals the
rupture strain. Of course this requires the rupture strain
to be extrapolated to the required conditions as well.
This is typical done using Equation 1b with ln(εF,h)
replacing ln(�j,h), where εF,h is the rupture strain ob-
served at the accelerated test condition h.

3.2. The 6-θ technique
The 6-θ technique describes the shape of any creep
curve by using six theta parameters through the
equation

εi,h = θ1,h(1 − e−θ2,hti,h ) + θ3,h(eθ4,hti,h − 1)

+ θ5,h(1 − e−θ6,hti,h ) (2a)
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θ5,h and θ6,h are two additional parameters required to
improve the fit of the creep curve to the experimental
data at test condition h over the early primary stage.
Again θj ( j = 1 to 6) is then related to the accelerated
test conditions through the simple linear extrapolation
function

ln(θj,h) = b0,j + b1,jτh + b2,jTh + b3,jτhTh (2b)

where τh is the stress associated with test condition h
and Th the temperature associated with test condition
h ( j = 1 to M). b0,j to b3,j are parameters that can
be estimated using either the linear or weighted linear
least squares techniques. Using Equation 2a gives a 6-
θ projection technique, where for example, the time to
minimum creep rate can be predicted by substituting in
the extrapolated θ values from Equation 2b, θ̃j,h, into

θ̃1,hθ̃
2
2,h

θ̃3,hθ̃
2
4,h

et[−θ̃2,h−θ̃4,h]+ θ̃5,hθ̃
2
6,h

θ̃3,hθ̃
2
4,h

et[−θ̃6,h−θ̃4,h]−1 = 0 (2c)

and solving numerically for t (= tM,h) at test condi-
tion h. From this the minimum creep rate itself can be
predicted as

ε̇M,h = θ̃1,hθ̃2,he−θ̃2,htM,h + θ̃3,hθ̃4,heθ̃4,htM,h

+ θ̃5,hθ̃6,he−θ̃6,htM,h (2d)

Again a prediction of the time to reach some specified
creep stain, εs,h, can be obtained by solving numerically
for t in the equation

θ̃1,h(1 − e−θ̃2,ht) + θ̃3,h(eθ̃4,ht − 1)

+ θ̃5,h(1 − e−θ̃6,h t) − εs,h = 0. (2e)

The failure time tF can be predicted by solving
Equation 2e when εs,h equals the rupture strain. This
will again require the rupture strain to be extrapolated to
the required conditions using Equation 2b with ln(εF,h)
replacing ln(θj,h), where εF,h is the rupture strain ob-
served at the accelerated test conditions.

3.3. The CRISPEN technique
The CRISPEN (CReep Strain Prediction for
ENgineering alloys) approach to interpolation
and extrapolation describes the evolution of creep
rate in terms of a rate equation containing internal
variables. For tertiary processes governed by intergran-
ular cavitations, which is assumed to be the damage
mechanism relevant for the material used in this study,
the creep curve is given by the equation

εi,h = − 1

�4,h
ln{1 − �3,h�4,hti,h

−�1,h�4,h(1 − e�2,hti,h )} (3a)

�1,h to �4,h are parameters governing the evolution of
strain with time at test condition h. Again �i ( j = 1

to 4) are then related to the accelerated test conditions
through the simple linear extrapolation function

ln(�j,h) = c0,j + c1,jτh + c2,jTh + c3,jτhTh (3b)

where τh is the stress associated with test condition h
and Th the temperature associated with test condition
h ( j = 1 to M). c0,j to c3,j are parameters that can be
estimated using either linear or weighted linear least
squares techniques. The time to minimum creep rate
can be predicted by substituting in the parameters ex-
trapolated from Equation 3b, �̃j,h, into

Ṽ h

[
�̃1,h�̃

2
2,he−�̃2,ht

]
− Ũ h[−�̃3,h�̃4,h − �̃1,h�̃2,h�̃4,he−�̃2,ht]

Ṽ 2
h

= 0

(3c)

where

Ũ h = [�̃3,h + �̃1,h�̃2,h(1 − e−�̃2,ht)],

Ṽh = [1 − �̃3,h�̃4,ht − �̃1,h�̃4,h(1 − e−�̃2,ht)],

and solving numerically for t(= tM,h) at test condition
h. From this the minimum creep rate itself can be pre-
dicted as

ε̇M,h = [�̃3,h + �̃1,h�̃2,h(1 − e−�̃2,htM,h )]

[1 − �̃3,h�̃4,htM,h − �̃1,h�̃4,h(1 − e−�̃2,htM,h )]

(3d)

Again a prediction of the time to reach some specified
creep stain, εs,h, can be obtained by solving numerically
for t in the equation

− 1

�̃4,h
ln{1 − �̃3,h�̃4,ht − �̃1,h�̃4,h(1 − e�̃2,ht)}

−εs,h = 0. (3e)

The failure time tF can be predicted by solving
Equation 3e when εs,h equals the rupture strain. This
will again require the rupture strain to be extrapolated to
the required conditions using Equation 3b with ln(εF,h)
replacing ln(�j,h), where εF,h is the rupture strain ob-
served at the accelerated test condition h.

3.4. The Omega technique
Many petroleum companies in the USA have adopted
the MPC � methodology for the life assessment of
components used at their plants. Indeed, this method
has now been recognised for inclusion in API RP579 on
fitness for service. Recently, Prager [8] has formalised
one version of this � approach where the creep curve
expression takes the form

εi,h = − 1

� 1,h
ln[1 − �2,h(�1,h)ti,h] (4a)

where �1,h and �2,h are parameters governing the evo-
lution of strain with time at test condition h. Unlike the
three techniques above, this approach does not model
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the primary stages of creep as the model contains only
two parameters. From Equation 4a the remaining life
of a component at test condition h is given by

tF,h − ti,h = 1

�2,h�1,h
[e−�1,hεi,h − e−�1,hεF,h ]

or after taking logs

ln[tF,h − ti,h] = ln

{
1

�2,h�1,h

}

+ ln[e−�1,hεi,h − e−�1,hεF,h ] (4b)

Again these parameters are then related to the accel-
erated test conditions through the simple linear extrap-
olation function

ln(�j,h) = d0,j + d1,jτh + d2,jTh + d3,jτhTh (4c)

d0,j to d3,j are constants that can be estimated using
linear or weighted linear least squares procedures. Let-
ting �̃j,h represents extrapolated Omega values from
Equation 4c, it is then possible to use these values to
predict a variety of creep properties at close to the oper-
ating conditions for a designed material. A prediction
of the minimum creep rate at test condition h is quite
straightforward

ε̇M,h = �̃2,h. (4d)

A prediction of the time to failure at test condition h is
given by

tF,h = 1 − e−�̃1,hεF,h

�̃1,h�̃2,h
. (4e)

Of course this requires the rupture strain to be ex-
trapolated to the required conditions as well. This is
typical done using Equation 4c with ln(εF,h) replacing
ln(�j,h), where εF,h is the rupture strain observed at the
accelerated test conditions. A prediction of the time to
reach some specified creep strain at test condition h,
ts,h, can be obtained from

ts,h = 1 − e−�̃1,hεs,h

�̃1,h�̃2,h
(4f)

where εs,h is the specified strain.

3.5. Some CDM techniques
Othman and Hayhurst [7] generalised Kachanov’s [5]
and Rabotnov’s [6] approaches to damage accumula-
tion so that the resulting creep curve has both primary
and tertiary components. They model a normalised
creep curve at test condition h using

εi,h

εF,h
= 1 −

[
1 −

(
ti,h
tF,h

)vh+1
]�h

(5a)

where �h and vh are model parameters that should, the-
oretically, be independent of stress and temperature. In
reality, and as identified by both Othman and Hayhurst
[7] and Evans and Wang [14], these parameters do vary
with stress and to a lesser extent temperature. The pa-
rameters �h and vh are estimated from Equation 5a
using a non linear least squares procedures applied to
all the creep curves obtained from a number of dif-
ferent accelerated test conditions. The above authors
ignored this and simply averaged over all the parame-
ter estimates. This paper will try and account for this
test dependency by using the same functional form as
used in the above techniques

ln(vh) = e0,1 + e1,1τh + e2,1Th + e3,1τhTh
(5b)

ln(�h) = e0,2 + e1,2τh + e2,2Th + e3,2τhTh

The above normalised creep curve implies a creep
strain equation of the form

εi,h = Aτ n
h tvh+1

F,h

�h(vh + 1)

[
1 −

(
1 −

(
ti,h
tF,h

)vh+1)�h
]

(5c)

where A and n are additional model parameters. The es-
timated values for �h and vh obtained from Equation 5a
at a particular test condition, together with the failure
time at that condition, are inserted into Equation 5c
and a non linear least squares procedure used to obtain
a value for Aτ n

h . When this is repeated over all accel-
erated test conditions the estimated values for ln(Aτ n

h )
can be used in the regression

ln
(

Aτ n
h

) = e0,3 + e1,3τh + e2,3Th + e3,3τhTh (5d)

with least squares being used to estimate the parameters
e0,3 to e3,3. This equation can be used to predict val-
ues for A and n at various temperatures. All the above
parameter estimates can then be used to obtain creep
property predictions. These creep property predictions
are rather unusual because properties such as time to
a particular creep strain and the minimum creep rate
can not be predicted until the time to failure, tF, is first
predicted. In the Othman and Hayhurst model the time
to failure at stress condition τh is predicted from,

tF,h =
[

vh + 1

(φh + 1)
(
Bτm

h

)
]1/vh+1

(5e)

where φh, B and m are additional model constants. An
estimate for φh is given by 1−(n/1−�h)), where vh and
�h are predicted in the way described above. To predict
failure times beyond the accelerated stress conditions
the term Bτm

h must also be extrapolated. Equation 5e
is first rearranged to yield values for Bτm

h at each ac-
celerated test condition using the estimated values for
vh and φh and the known accelerated failure time tF.
These calculated values for ln(Bτm

h ) can be used in the
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regression

ln(Bτm
h ) = e0,4 + e1,4τh + e2,4Th + e3,4τhTh (5f)

with least squares being used to estimate the parameters
e0,4 to e3,4. This equation can be used to predict values
for B and m at various temperatures. These predictions,
once substituted into Equation 5e, give predictions for
failure times at any test condition.

These Equations imply that at the time of failure the
creep rate is infinite and the effective cross sectional
area zero. This is never the observed case and if this
assumption is relaxed the above equations generalise
to

εi,h

εF,h
=

1 − [
1 − ω∗

F,h

( ti,h

tF,h

)vh+1]�h

1 − (1 − ω∗
F,h)�h

(5g)

εi,h = Aτ n
h tvh+1

F,h

�h(φh + 1)ω∗
F,h

×
[

1 −
(

1 − ω∗
F,h

(
ti,h
tF,h

)vh+1)�h
]

(5h)

tF,h =
[

(vh + 1)[1 − (1 − ωF,h)φ+1]

(φh + 1)(Bτm
h )

]1/vh+1

(5i)

where ω∗
F,h is an additional parameter related to dam-

age accumulation as given by ωF,h.. This is explained
in more detail in sub Section 4.4 below. This is
an additional parameter that requires estimation in
Equation 5g. Equations 5g to 5i can be used in the
same way as Equations 5a to 5f to obtain creep prop-
erty predictions with one addition. The value for ω∗

F,h
can also be made a function of stress so that

ln(ω∗
F,h) = e0,5 + e1,5τh + e2,5Th + e3,5τhTh (5j)

where e0,5 to e3,5 are estimated by ordinary least
squares.

4. Theoretical underpinnings of the above
prediction techniques

4.1. The theta techniques
Evans [15] postulated the following constitutive equa-
tion for the creep rate

ε̇ = ε̇0(1 + H + R + W ) (6a)

where ε̇0 is the initial creep rate, H is overall harden-
ing, R overall recovery and W overall damage. These
variables were in turn assumed to be governed by

Ḣ = −Ĥ ε̇ (6b)

Ṙ = R̂ (6c)

Ẇ = Ŵ ε̇ (6d)

where Ĥ , R̂ and Ŵ are positive quantities that are
functions of stress and temperature. Integration of

Equations 6 for conditions of constant stress and tem-
perature gives

ε = 1

Ĥ ε̇0

(
ε̇0 − R̂

Ĥ

)
(1 − e−Ĥε̇0t) + 1

Ŵ

(
e

ŴR̂
Ĥ

t − 1
)
(7a)

Equation 7a has the same functional form as the 4-�
creep curve given by Equation 1a with

�1 = 1

Ĥ ε̇0

(
ε̇0 − R̂

Ĥ

)
; �2 = Ĥ ε̇0; �3 = 1

Ŵ
;

�̂4 = Ŵ R̂

Ĥ
(7b)

and so each �j is expected to be some function of stress
and temperature.

Evans [2] and Evans [4] have shown that a better
fit to the early primary part of the creep curve can
be improved through the following generalisation of
Equation 1a

εi = η(θ ) =
q∑

j=1

�2j−1(1 − e−�2j ) (7c)

If �2j−1 > 0, the jth term in this series represents a
process which has a creep rate decreasing with increas-
ing time (e.g., a normal primary curve). If �2j−1 < 0
and �2j < 0 the term has a rate which increases with
increasing time (e.g., a tertiary process). The fit of this
model to any experimental creep curve can be made as
close as desired by just increasing the value of q. Al-
though there is no theoretical limit to the value of q , each
term in Equation 7c needs to be capable of a theoretical
explanation in terms of micro mechanisms governing
high temperature creep. Also, estimating Equation 7c
when q is large presents huge practical problems in
terms of being able to actually estimate all the �j val-
ues. Primary and tertiary creep in precipitation hard-
ened creep resisting alloys are known to be well rep-
resented by the first and second terms in Equation 7c
so that agreement to experimental observation may be
achieved by using Equation 2a. θ5 and θ6 are two ad-
ditional parameters required to improve the fit of the
creep curve to the experimental data over the early pri-
mary stage. As suggested in Evans [2], θ5 and θ6 may
describe strains that are not permanent so that they may
be a simple description of anelastic behaviour imme-
diately after loading and therefore are recoverable on
removal of the load.

4.2. The CRISPEN technique
The CRISPEN (CReep Strain Prediction for
ENgineering alloys) approach to interpolation
and extrapolation describes the evolution of creep
rate in terms of a rate equation containing internal
variables. This is supplemented by further differential
equations which govern the evolution of the internal
variables. Primary creep is modelled through a set of
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internal stress variables governed by work hardening
and recovery. Tertiary creep is controlled by the growth
of a damage parameter and various choices of growth
mechanism are postulated. The method then seeks
to construct creep curves under general conditions
of stress and temperature by integrating together
the coupled differential equations. Since a choice
of mechanisms (which affect the shape of the creep
curve) is offered, some knowledge of creep behaviour
is required in advance.

For tertiary processes governed by intergranular cav-
itations, the differential equations are

ε̇ = ε̇0(1 − S)eω (8a)

Ṡ = H ε̇0(1 − S) − RS (8b)

ω̇ = C ε̇. (8c)

where S is an internal stress term and ω a damage term,
both of which are zero at the start of creep. H , R and
S are material constants representing hardening, recov-
ery and damage rates. These later quantities must be
obtained from the experimental creep curves. It is not
clear how they should depend on applied stress and tem-
perature. Thus, measured steady state creep rates, times
in tertiary and primary creep and Norton’s exponent are
required and the dependence of these on conditions is
not well known especially at the low stresses encoun-
tered in service. However, under conditions of constant
stress and temperature, Equations 8 can be integrated
in closed form to give Equation 3a with

�1 = H ε̇2
0

(H ε̇0 + R)2
, �2 = H ε̇0 + R,

�3 = Rε̇0

H ε̇0 + R
and �4 = C. (8d)

As such the CRISPEN parameters, �j ( j = 1 to 3 only),
should also depend on stress and temperature.

4.3. The Omega technique
Recently, Prager [8] has formalised the above version of
the � approach. It starts with the following differential
equation

ε̇ = dεt

dt
= �2

[
σ

σ0

]B1
[

1

1 − ω

]B2

(9a)

where σ0 is the initial stress in a constant load creep test
and ω is a damage parameter measuring the loss of cross
sectional area. Creep damage is therefore visualised as
the formation of cavities. B1 and B2 are model param-
eters. For a constant load creep test σ/σ0 = exp(ε), so
that Equation 9a simplifies to

ε̇ = dεt

dt
= �2 exp(B1ε)

[
1

1 − ω

]B2

(9b)

Unfortunately, this is not conventionally integrated.
In order to derive a creep curve expression, Prager

assumes that simple exponentials can be used to model
creep rate acceleration due to increasing damage and
micro structural changes not associated with damage

ε̇ = dεt

dt
= �2 exp(B1ε)

[
1

exp(−B3ε)

][
1

exp(−B4ε)

]
(9c)

where B1 accounts for the rate increase due to cross
section reduction (i.e., the stress increase in a constant
load test), B3 corresponds to micro structural damage
and B4 is used to account for other micro structural
factors associated with stress change. Integration of
Equation 9c gives the creep curve shown in Equation
4a with �1 = B1 + B3 + B4.

4.4. Some CDM techniques
To model primary as well as tertiary creep, Othman and
Hayhurst [7] proposed the following pair of differen-
tial equations to model the rate of strain and damage
accumulation

dωF

dt
= Bσ m

(1 − ωF)φ
tv (10a)

ε̇ = dεt

dt
= Aτ ntv (10b)

where ωF is a damage parameter defined as the effec-
tive loss in cross sectional area resulting from cavity
formation as creep proceeds

ωF =
(

1 − A

A0

)

where A0 is the original cross sectional area of the test
specimen, and A the remaining effective area. A, B, m,
v, φ, and n are model constant that are supposed to be
independent of test conditions. From Equation 10a

(1 − ωF)φdωF = Bτm
t dt (10c)

which upon integration over the rangeωF = 0 toωF = 1
with ωF = 0 when t = 0 and ωF = 1 when t = tF
gives Equation 5e above. Now the indefinite integral of
Equation 10c assuming ωF = 0 when t = 0 is

[1 − ωF]φ+1 = 1 −
[

t

tF

]v+1

Substituting this equation into Equation 10b gives

ε̇ = dεt

dt
= Aτ n

o

[(
1 − t

tF

)v+1] −n
φ+1

(10d)

which upon integration gives Equation 5c with � =
−n/φ+1. Repeating the above steps, but now allowing
ω = ωF ≤ 1 when t = tF yields Equations (5g to
5i above). In Equation 5g and 5h the parameter ω∗

F is
related to ωF through the expression ω∗

F = 1 − [1 −
ωF]φ+1. Provided ωF is less than 1 the creep rate will
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be finite at the point of failure and the effective cross
sectional area positive.

5. Estimation
5.1. Estimating various creep curves
The strain values εi,h, given by Equations 1a, 2a, 3a,
4a, and 5a, can be thought of as fitted strains, derived
at test condition h, using each of the five prediction
techniques discussed above. These fitted strains will
differ from the observed N strains by the size of the
experimental scatter, νi,h, at test condition h. Letting k
represent each of the above prediction techniques, (so
that k = 1 corresponds to the 4-� techniques and k = 5
to the CDM approach),

ε1,i,h = �1,h(1 − e−�2,hti,h ) + �3,h(e�4,hti,h − 1)

+ ν1,i,h = f1(ti,h; �j,h) + ν1,i,h (11a)

ε2,i,h = θ1,h(1 − e−θ2,hti,h ) + θ3,h(eθ4,hti,h − 1)

+ θ5,h(1 − e−θ6,hti,h ) + ν2,i,h = f2(ti,h; θj,h)

+ ν2,i,h (11b)

ε3,i,h = − 1

�4,h
ln{1 − �3,h�4,hti,h

− �1,h�4,h(1 − e�2,hti,h )} + ν3,i,h

= f3(ti,h; �j,h) + ν3,i,h (11c)

ε4i,h = − 1

� 1,h
ln[1 − �2,h(�1,h)ti,h] + ν4,i,h

= f4(ti,h; �j,h) + ν4,i,h (11d)

ε5,i,h

εF,h
=

1 − [
1 − ωF,h

( ti,h

tF,h

)vh+1]�h

1 − (1 − ωF,h)�h
+ ν5,i,h

= f5(ti,h; (vh; �h, ωf,h)) + ν5,i,h (11e)

where fk( ) is the fitted stain corresponding to pre-
diction technique k at test condition h and in each
case the fitted strains depend on an unknown parameter
vector,k,h, and time. Thus for each of the techniques
above,

1,h =




�1,h

�2,h

�3,h

�4,h


 ; 2,h =




θ1,h

θ2,h

θ3,h

θ4,h

θ5,h

θ6,h




; 3,h =




�1,h

�2,h

�3,h

�4,h


 ;

4,h =
[
�1,h

�2,h

]
; 5,h =




vh

�h

ωf,h


 (12)

The unknown parameters in the vectors of
Equation 12 can be estimated from an experimental
creep curve obtained at test condition h using a non-
linear least squares estimator. This estimator chooses a

value for k,h such that

Fk,h(k,h) =
N∑

i=1

ν2
k,i,h (13)

are minimised, where N is the number of strain—time
readings making up the experimental curve at test con-
dition h. Minimising such a sum of squared random
errors is a standard problem in non-linear optimisation
and the method of Gauss–Newton is often used. This
technique linearises Equations 1a, 2a, 3a, 4a and 5a by
using a linear Taylor series expansion around an initial
value for the k,h parameter vector, 0

k,h

εk,i,h − fk
(
ti,h; 0

k,h

)
+

p∑
j=1

X0
k,i,j

0
k,h,j =

p∑
j=1

X0
k,i,j

1
k,h,j + λ0

k,i,h (14)

where 0
k,h,j can be though of as an initial guess as to

the true value for the j th row of k,h. The value for
p depends on the prediction technique being used, so
that p = 4 for the 4-θ and CRISPEN methods, p = 6
for the 6-θ technique, p = 3 for the CDM method
and p = 2 for the Omega method. 1

k,h,j is an im-
proved estimate for the j th row of k,h. fk(ti,h; 0

k,h)
are the strains evaluated using the kth prediction tech-
nique with k,h = 0

k,h and νk,i,h = 0. X0
k,i,j is the

ith value for the partial derivative of fk(ti,h, 0
k,h) with

respect to k,h,j as evaluated using k,h,j = 0
k,h,j,

X0
k,i,j = ∂ fk

(
ti,h, ψ

0
k,h

)/
∂ψ0

k,h,j (15)

λ0
k,i,h contains both the true random error νk,i,h, and

an approximation error due to the linear Taylor series
expansion as evaluated at k,h,j = 0

k,h,j.
Equation 14 is a linear equation and the ordinary least

squares formula can be applied to it to yield estimates
for 1

k,h,j. That is, values for 1
k,h,j are chosen so as to

minimise

N∑
i=1

(
λ0

k,i,h

)2

An iterative procedure now takes place with 1
k,h,j

replacing 0
k,h,j in Equation 14. Applying least squares

again to Equation 14 will yield a further improved esti-
mated for k,h,j. This iterative process continues until
the successive estimates for k,h,j converge. Upon con-
vergence, Equation 13 will have been minimised. Let
̃k,h,j stand for such estimates of k,h,j.

5.2. Estimating extrapolation functions
Equations 1b, 2b, 3b, 4c and 5b are the extrapolation
functions for each creep property prediction technique
and can be estimated by ordinary least squares. The
creep life predictions from such estimates are said to
be unweighted. Theˆ symbol will be used to represent
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the resulting estimates of the parameters for the extrap-
olation function. So, for example, â0,j to â3,j are the
unweighted estimates for a0,j to a3,j in Equation 1b.

However, because the values for k,h,j are estimates
obtained from the above optimisation procedure, they
can’t really be treated as fixed values. Rather, they
are random variables that have a mean value and a
corresponding variance. It therefore makes sense to
weight each value for k,h,j by their corresponding vari-
ances before applying the least squares procedure to
Equations 1b, 2b, 3b, 4c and 5b. Clearly, if a particular
k,h,j value is estimated with little certainty that data
point should have only a minor impact in determining
the parameters of Equations 1b, 2b, 3b, 4c and 5b. As
ln(k,h,j) values are used in Equations 1b, 2b, 3b, 4c
and 5b the variance of each ln(k,h,j) is a measure of
such certainty. These variances are given by

Var[ln(k,h,j)] = ln

[
1 +

(
Var[k,h,j]

(k,h,j)2

)]
(16a)

where Var[k,h,j] is the variance associated with the
estimate made for k,h,j, i.e., ̃k,h,j. This paper uses
the approaches taken by Evans [16] who has recently
shown how to make robust estimates for Var[k,h,j].
That is, ones that allow for the νk,i,h to be auto correlated
in very general ways.

Those k,h,j estimates with large variances should
carry little weight in the determination of each of the
parameter in Equations 1b, 2b, 3b, 4c and 5b. Hence it
makes sense to give each k,h,j estimate a weight given
by

�k,h,j = 1

Var[ln(k,h,j)]
(16b)
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Figure 1 Difference between experimental and fitted creep strains obtained using various prediction techniques at 823 K and 270 MPa.

Evans [1] proposed that each variable in Equations
1b be multiplied by �k,h,j and the ordinary least squares
estimation technique applied to this weighted extrapo-
lation function in order to obtain the required parame-
ters. For, example, for the 4-� extrapolation function
given by Equation 1b, the weighted least squares re-
gression is

[ln θj,h]∗ = b0,j + b1,jτ
∗
h + b2,jT

∗
h + b3,j[τhTh]∗ (16c)

where [ln θj,h]∗ = �1,h,j[ln θj,h], τ ∗
i = �1,h,j[τh], T ∗

h =
�1,h,j[Th], [τrTh]∗ = �1,h,j[τhTh]. The ∼ symbol will
be used to represent the resulting estimates made of
the parameters for the extrapolation function. So, for
example, ã0j to ã3j are the weighted estimates for a0j to
a3,j in Equation 1b.

6. Results
6.1. Fitted creep curves
Fig. 1 shows the difference between the actual creep
strain recorded at various times at a stress of 270 MPa
and a temperature of 823 K and the fitted strains given
by Equations 1a, 2a, 3a, 4a and 5a. These are the νk,i,h
values of Equation 11a to Equation 11e, with νk,i,h (in
absolute terms) being large when the creep curve is a
poor fit to the experimental data. The results shown
are typical of those obtained at the other accelerated
test conditions. A number of observations can be made
about the techniques used to obtain the fitted creep
curves. First, when using the CDM methodology, the
fitted creep strains are very poor at all times if failure
is forced to occur when ωF = 1. However, the fitted
strains are very good (at all times) if ωF is allowed
to be different from unity. Indeed, under such circum-
stance the fitted strains are as good if not better than
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those obtained from the other techniques. However, a
technique that provides good fitting creep curves to the
accelerated test data does not necessarily produce good
extrapolated creep curves. What is also important is
how well the parameters of the creep curve vary with
test conditions and this will be looked at in the section
below.

Secondly, the 6-θ technique gives a better fitted
strain than those obtained from the 4-� technique—
especially at low strains or times. Thirdly, the CRISPEN
technique produces strain predictions that are better
than those obtained using the 4-� technique and sim-
ilar to those obtained using the 6-θ technique—except
at small times where the 6-θ technique is far superior.
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Figure 2 (a) The variation of �2 and �3 with stress at 783, 823 and 863 K for 1Cr-1Mo-IV steel. (b) The variation of �1 and �4 with stress at 783,
823 and 863 K for 1Cr-1Mo-IV steel.

Fourthly, the� technique yields fairly poor fitted strains
that are very similar, for times in excess of 100 h, to
those obtained using the CDM approach with ωF = 1.
Finally, for all the techniques, the values for νk,i,h ex-
hibit wave like behaviour and so are clearly autocor-
related. It is therefore important to use the robust esti-
mation techniques described by Evans [16] to estimate
Var[k,h,j] and thus the weights required for a weighted
least squares estimate of the extrapolation functions.

6.2. Variation of k,h,j with test conditions
Figs. 2a and b show the estimated CRISPEN parameters
as a function of the accelerated stress and temperature

2061



test conditions. Also shown are the predicted values
given by Equation 3b with c0,j to c3,j estimated using
ordinary least squares (solid lines) and weighted least
squares (dashed lines). It is clear that the parameters
ln(�2) and ln(�3) show a strong dependency on test
conditions with Equation 3b giving a very good fit to
the data. This is in agreement with Equations 8d where
�2 and �3 are shown to be functions of stress, given
that the initial creep rate, ε̇0, is dependant upon stress.

However, ln(�1) and ln(�4) show less variation with
stress and, in the case of ln(�4), substantially more
scatter around the fitted trend lines. This is broadly in
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Figure 3 (a) The variation of �2 and �4 with stress at 783, 823 and 863 K for 1Cr-1Mo-IV steel. (b) The variation of �1 and �3 with stress at 783,
823 and 863 K for 1Cr-1Mo-IV steel.

agreement with Equations 8d where �4 was shown to
be a constant. Using weighted least squares alters only
slightly the predicted values for �1, �2 and �3, but for
�4 weighting has a significant impact on the predicted
values for �4 (reflecting the large scatter present in the
estimated �4 values).

Similar conclusions can be drawn from Figs 3 and 4
that show the 4-� and 6-θ parameters respectively as a
function of the accelerated stress and temperature test
conditions. Also shown are the predicted values given
by Equations 1b and 2b with a0,j to b3,j estimated using
ordinary least squares (solid lines) and weighted least
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Figure 4 (a) The variation of θ2, θ4 and θ6 with stress at 783, 823 and 863 K for 1Cr-1Mo-IV steel. (b) The variation of θ1, θ3 and θ5 with stress at
783, 823 and 863 K for 1Cr-1Mo-IV steel.

squares (dashed lines). It is clear that the parameters
ln(�2), ln(�4), ln(θ2), ln(θ4) and ln(θ6) show a strong
dependency on test conditions with Equations 1b and
2b giving a very good fit to the data. This is in agree-
ment with Equations 6 and 7 where all the theta pa-
rameters are shown to be functions of stress. However,
ln(�1), ln(�3), ln(θ1) ln(θ3) and ln(θ5) show less varia-
tion with stress with substantially more scatter around

the fitted trend lines. Using weighted least squares alters
only slightly the predicted values for ln(�2), ln(�4),
ln(θ4) and ln(θ6), but for the remaining theta parame-
ters weighting has a significant impact on the predicted
values.

Fig. 5 show the estimated Omega parameters as
a function of the accelerated stress and temperature
test conditions. Also shown are the predicted values
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Figure 5 (a) The variation of �1 with stress at 783, 823 and 863 K for 1Cr-1Mo-IV steel. (b) The variation of �2 with stress at 783, 823 and
863 K for 1Cr-1Mo-IV steel.

given by Equation 4c with d0,j to d3,j estimated us-
ing ordinary least squares (solid lines) and weighted
least squares (dashed lines). It is clear that the pa-
rameter ln(�2) shows a strong dependency on test
conditions with Equation 4c giving a very good fit
to the data. Using weighted least squares alters only
slightly the predicted values for ln(�2). However,
ln(�1) shows less variation with stress with sub-
stantially more scatter around the fitted trend lines.
As expected with such variation, weighting makes

a big difference to the predicted values for ln(�2).
These result are different to that of Prager [8] and
Keeble [9] who found that it was ln(�1), rather than
ln(�2), that varied most systematically with stress and
temperature.

Fig. 6 show the estimated CDM parameters as a func-
tion of the accelerated stress and temperature test con-
ditions. Also shown are the best fit lines estimated us-
ing ordinary least squares (solid lines) and weighted
least squares (dashed lines). According to the CDM
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Figure 6 (a) The variation of v and � with stress at 783, 823 and 863 K for 1Cr-1Mo-IV steel. (b) The variation of ω∗
F with stress at 783, 823 and

863 K for 1Cr-1Mo-IV steel.

model the parameters v and � in Equation 5a should
strictly be independent of stress. Whilst the estimated
values for these parameters show substantial random
variation, they do also seem to vary to some extent
with stress. However, this large variation may explain
the poor extrapolated creep property predictions that
stem from the above CDM model. The estimated de-
pendency with stress is further seen to be heavily depen-
dent upon whether ordinary or weighted least squares
is used. Further, Fig. 6b shows that the value for ω∗

F at
failure is also dependant upon stress, with this stress de-

pendency being more well defined at the higher temper-
atures. Weighting has its greatest impact at the lowest
temperature.

Fig. 7 shows that, whilst the rupture strain is de-
pendent upon test conditions, this relationship is quite
weak and subject to substantial variation. Whilst this
may affect the predicted times to failure given by the
above procedures (excluding CDM), it needs to be re-
membered that at the point of failure the creep curve is
quite steep so that large variations in rupture strain are
consistent with very similar times to rupture.
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6.3. Creep property predictions
6.3.1. Times to failure
Fig. 8a shows the failure time predictions obtained
using Equations 5, with ωF ≤ 1, together with the
parameter estimates shown in Fig. 6. All the CDM
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Figure 8 (a) Predicted ln τ/ ln tF relationships obtained from CDM lifeing procedures. The plot includes the measured tF values from the short-
term constant-stress tests at 823 K and the longer-term results from constant load tests at 823 K. (b) Predicted ln τ/ ln tF relationships obtained
from various lifeing procedures. The plot includes the measured tF values from the short-term constant-stress tests at 823 K and the longer-
term results from constant load tests at 823 K. (c) Predicted ln τ/ ln tF relationships obtained from various lifeing procedures. The plot in-
cludes the measured tF values from the short-term constant-stress at 823 K and the longer-term results from the constant load tests at 823 K.
(Continued.)

parameters were estimated using the short-term con-
stant stress data and not surprisingly the resulting pre-
dictions for these short times are very good. How-
ever, the longer-term predictions are not very good,
especially at the lower stresses. As all the other creep
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Figure 8 (Continued).

property predictions using CDM depend on these fail-
ure time predictions (Equation 5h shows that time to
strain is a function of the time to failure) it is to
be expected that these creep property predictions will
also be poor and so are not shown in the rest of the
paper.

Fig. 8b and c show the predictions made for
time to failure using the other prediction techniques,
both in weighted and unweighted form. The Omega
and CRISPEN predictions are similar irrespective of
whether weighting is used. The 6-θ failure time predic-
tions are always better than their 4-� equivalents and

weighting always improves both the 4-� and 6-θ failure
time predictions. The unweighted 4-� and 6-θ failure
time predictions tend to converge at the lower stresses.
Of all the prediction techniques, the weighted 6-θ ap-
proach is best, with the weighted 4-� and weighted
CRISPEN techniques giving very similar failure time
predictions—with 4-� eing better at the lowest stresses.
In all case there is a tendency to over predict the actual
data obtained from the longer-term tests. This is to be
expected because these longer-term tests were done at
constant load, whilst the predictions were made from
constant stress tests.
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Figure 9 (a) Constant stress ln τ/ ln εM relationships predicted from various lifeing procedures. The plot includes the measured εM values from the
short-term constant-stress tests at 823 K and the longer-term results from the constant load tests at 823 K. (b) Constant stress ln τ/ ln εM relationships
predicted from various lifeing procedures. The plot includes the measured εM values from the short-term constant-stress tests at 823 K and the
longer-term results from the constant load tests at 823 K.

6.3.2. Minimum creep rates
Fig. 9a and b show the predictions made for mini-
mum creep rates using all the prediction techniques
(excluding CDM), both in weighted and unweighted
form. Again, the Omega and CRISPEN predictions are
similar irrespective of whether weighting is used. At
the lowest stresses, the 4-� predictions are always bet-
ter than their 6-θ equivalents and in this case weight-
ing always leads to a deterioration in both the 4-�
and 6-θ min creep rate predictions. However, in un-
weighted form, the 4-�, CRISPEN and Omega tech-
niques yield equally good long-term minimum creep
rate predictions.

6.3.3. Times to various strains
Fig. 10a and b show the predictions made for times
to 0.05% strain using all the prediction techniques
(excluding CDM), both in weighted and unweighted
form. The Omega predictions are by far the worst
(both weighted and unweighted) failing even to pre-
dict the correct times within the short-term accelerated
test data. This is unsurprising given that Equation 4a
does not contain a primary component. The 6-θ tech-
nique predicts well the times to 0.05% strain within
the short term data and if weighting is used this tech-
nique also yields excellent predictions for such times
at the middle to lower stresses as well. As expected
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Figure 10 (a) Predicted ln τ/ ln t0.05% relationships obtained from various lifeing procedures. The plot includes the measured t0.05% values from the
short-term constant-stress tests at 823 K and the longer-term results for the constant load tests at 823 K. (b) Predicted ln τ/ ln t0.05% relationships
obtained from various lifeing procedures. The plot includes the measured t0.05% values from the short-term constant-stress tests at 823 K and the
longer-term results for the constant load tests at 823 K.

the 4-� technique produces poor predictions of times
to 0.05% strain compared to the 6-θ technique at the
high and medium stresses shown in Fig. 10a. Curi-
ously, the predictions from this technique are quite good
at the very lowest stresses. The weighted CRISPEN
technique produces predictions similar to those ob-
tained using the weighted 6-θ approach at the mid-
dle stresses shown in Fig. 10, but slightly poorer pre-
dictions at the very highest and lowest stresses. The
weighted 6-θ predictions appear to fit all the data

points shown in Fig. 10 better than any of the other
predictions.

As similar picture emerges in Fig. 11a and b. These
figures show the predictions made for times to 0.1%
strain using all the prediction techniques (exclud-
ing CDM), both in weighted and unweighted form.
The Omega predictions (weighted or unweighted)
are poor at all the stresses. The CRISPEN predic-
tions (weighted and unweighted) are good at high
to medium stresses but tend to underestimate at the
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Figure 11 (a) Predicted ln τ/ ln t0.1% relationships obtained from various lifeing procedures. The plot includes the measured t0.1% values from the
short-term constant-stress tests at 823 K and the longer-term results for the constant load tests at 823 K. (b) Predicted ln τ/ ln t0.1% relationships
obtained from various lifeing procedures. The plot includes the measured t0.1% values from the short-term constant-stress tests at 823 K and the
longer-term results for the constant load tests at 823 K.

lower stresses. The same is true for the weighted 6-θ
technique.

7. Conclusions
Of all the prediction techniques studied above, the
CDM approach yielded the worst creep property pre-
dictions, with predicted times to failure being wholly
inadequate. The 6-θ approach was best for pre-
dicted long-term times to failure, followed by the
weighted 4-� and then the CRISPEN approaches.

The best minimum creep rate predictions came from
using the unweighted 4-�, or CRISPEN or the
Omega techniques (either weighted or unweighted).
The 6-θ approach only yielded adequate minimum
creep rate predictions in unweighted form. Finally,
times to low strains were best predicted using the 6-θ
and CRISPEN techniques (weighted). The 6-θ tech-
nique was best for interpolating through the short-
term data on times to low strains, whilst both tech-
niques yielded very similar predictions at the lowest
stresses.
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